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Computing processes are ultimately abstractions of physical processes: thus, a 
comprehensive theory of computation must reflect in a stylized way aspects of 
the underlying physical world. On the other hand, physics itself may draw fresh 
insights and productive methodological tools from looking at the world as an 
ongoing computation. The lerm reformation mechanics seems appropriate for this 
unified approach to physics and computation. 

1. I N T R O D U C T I O N  

C o m p u t a t i o n - - w h e t h e r  by man or  by m a c h i n e - - i s  a physical  activity. 
If we want  to compute  more,  faster, better ,  more efficiently, and more  
intel l igently,  we will have to learn more about  nature.  In a sense, nature  has 
been cont inua l ly  comput ing  the "nex t  s tate" of the universe for bi l l ions of 
years;  all we have to d o - - a n d ,  actually,  all we can d o - - i s  "h i t ch  a r ide" on 
this huge ongoing computa t ion ,  and try to discover  which parts  of it happen  

to go near  to where we want.  
This  is not merely  a p rob lem of  appl ied  physics  or  technology.  To 

develop  a more  fundamenta l  under s t and ing  of  in format ion  mechanics  we 
shall be asking new kinds  of quest ions  about  n a t u r e - - p o s s i b l y  extending  

into new di rec t ions  the very subject  mat te r  of physics.  
C o m p a r e  the act of pe r fo rming  a compu ta t ion  with that of per forming  

a physical  exper iment .  
In a compu ta t i on  (Figure  1) we have a cer tain selected por t ion  f of the 

physical  universe,  the computer .  We star t  f in specified initial  condi t ions  x 
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Fig. 1. Structure of a computation, f is a portion of the physical world, x and v are, 
respectively, initial and final conditions. 

Fig. 2. Structure of a physical experiment, f is a portion of the physical world, x and v arc, 
respectively, initial and final conditions. 

(program and data); we let the machinery f run undisturbed for a certain 
time; and then we look at its final conditions y, which we interpret as the 
result of the computation. 

Now, let's look at a physical experiment. Again, we have a certain 
selected portion f of the physical universe, the experimental set-up. We 
provide initial conditions x, we let f run for a certain time, and then we look 
at its final conditions, y. 

Think of intelligent beings viewing us from a faraway star. How could 
they tell whether we are performing a computation or a physical experi- 
ment? They cannot tell by what we do- - the re  is no objective difference. The 
difference is in our intentions, in our knowledge, in our expectations. 

In a computation, we have decided that we know f ,  and that that 
indeed is the transformation which we want to apply to x to get the result y. 
We know f so well that we are confident we could predict its operation by 
pencil-and-paper figuring. But then, every time we have an x and we want 
to know the result y, instead of using pencil and paper we know we can let f 
do the work. 

In a physical experiment, we have put together f, but we are not sure of 
how it works-- that ' s  what we want to find out! By using f several times, 
and comparing each time the output y with the input x, we hope to gain 
some ability to predict f ' s  behavior. And when we've gained enough 
confidence in our predictions, we are no longer performing a phydcal 
experiment--we've got a computer runningt It may not be the particular 
computer we want for a certain application, but a computer it certainly is. 

Thus, in a computation the unknown-- the  thing we are curious 
about-- is ) , ;  in an experiment, it's f. What actually happens is the same: it's 
only what we are going to do with it that is different. 

It's no wonder then that many of the issues that we face when we probe 
the workings of nature at a very fine level of detail will reappear in some 
disguise when we try to use the workings of nature at the same fine level of 
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detail, say, for computation. As theoretical physics had to evolve a new 
language to deal with these issues, so too will theoretical computer science. 

2. WHAT COMPUTATIONS?  WHY COMPUTATION? 

What circumstances are leading us to make these new demands on the 
theory of computation? While the theory evolved as an abstract branch of 
mathematics, now we are realizing that much of the computation that we 
want to do is characterized by an important constraint: it must be carried 
out either in partnership with or as a challenge to nature. Conventional 
theories of computation model nature well enough to tell us what can be 
computed, but not enough to tell us how best to compute. 

And why such an urge to compute, why such a challenge? One could 
beg the question by answering that these are built-in human traits, akin to 
curiosity and will. I will argue that this curiosity and this will are humane as 
well. 

Substantially, there are four contexts in which we use computation. 
1. Abstract problems. We may want to know the answer to an abstract 

question: What is the 100th digit of 7r? Or, find an English word with seven 
i 's  in it. 

2. Control. We may want to have a system capable of integrating in an 
appropriate way signals from input devices with the action of output devices 
("When you see a stop signal, step on the brake!"). We are so use to being 
served by many marvelous systems of this kind that often we become aware 
of them only through their failures: How come it takes two weeks for a 
postcard to go from New York to Boston? Or, the kitchen is dirty. Has the 

maid been taking a nap? 
Fact is, we like to have servants--strong, intelligent, obedient, discreet. 

There are so many things we want done but don't  want to do ourselves. 
Greece and Rome used slaves, to work in the mines or, say, to take 
dictation. But we know it's not pleasant for a person to work in the mines, 
and it's boring for a person to take dictation. A lot of computation goes into 
process control; if we don't  want to do it ourselves, we'll have to train some 

bits of nature to do it for us. 
3. Simulation. We may want to know the consequences of a given 

situation: What will the weather be tomorrow? Or, how is the inflation rate 
going to be affected by a tax cut of 10%? In this context, we would like to 
have our own domesticated version of the world in a box, to play with and 
do things to, and yet be able to say, Oops, I 'm sorry, I'll take it b ack - - I  

didn't really mean it! 
4. Optimization. Finally, we can insert context 3 into a goal-oriented 

servo-loop, and ask questions like: Which is the best place to spend my 
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vacation this summer? Here, inslead of  a direct problem (What will happen 
in this situation?) we have what is called an " inverse"  problem (In what 
situations will such a thing happen?), which is usually much harder to solve 
since it may involve an exhaustive search. To find the best solution, I have 
to construct  not one but innumerable toy w o r l d s - - o n e  with me lying on the 
beach in Spain, one with me climbing the Himalayas and maybe falling off 
a cliff, one with me winning in Monte Carlo, or going bankrupt  in Monte 
Carlo. e t c . - - a n d  select the one that maximizes my expectations. 

In context 3, we "on ly"  try to beat nature at its own game. We want  to 
make a weather that runs a little ahead of the real weather, an economy that 
runs a little ahead of the real economy.  Yet, what nature achieves with a 
lavish outlay of resources - - sun ,  water, lightning, and thunder  on a global 
s ca l e - - the  same things we want to safely model in our own room (we 
already do a lot of this every day in our own mind), with much more limited 
resources. 

If this sounds like a tough proposition, look at context 4. There, we still 
want to beat nature at its own game, but many times over. And  we'd better 
learn to do that well. For, nature has devised a wonderful  scheme to get a 
better thing out of a good thing; it's called Darwinian evolution. You start 
with a "good  thing," you make many more like it, only a bit different. If one 
of these looks "bet ter"  you keep it; the others, you throw away. It looks like 
a splendid scheme, and it is, but  it has a catch:  all is well as long as the 
things that get "'selected against" are bacteria or velocipede patents;  but  not 
when it's things like you and me. I don ' t  like to be in the test tube that gets 
thrown away, and I assume that you don ' t  like it either. Beyond a certain 
level, the evolut ionary scheme's simplicity is bought  at a huge p r i c e - - t ha t  is, 
untold suffering. 

We want to know whether the future that we are making is good for us 
to live in--before we are going to live in it. If we don ' t  like it, we want to 
make a different one. Until somebody  comes up with a more brilliant 
scheme, we will have to play the "muta t ion  and selection" game with cars, 
cities, TV shows, and social structures; shouldn ' t  we at tempt  to rehearse the 
"selection" act with models, before putt ing real people on the scene? 

In the long run, that 's  what computa t ion  (or thinking, if you want)  is 
about.  We are going to need a lot of  it. 

3. W H Y  P H Y S I C S ?  

We all know that computa t ion  is an "abs t rac t"  process. Whether  
embodied in flesh or metal, what counts is the p a t t e r n - - t h e  "form,"  not the 
"substance."  We know that " 1 2 8 +  128=256"  is essentially the same process 
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whether done in my head, or with pencil and paper, or on a hand calculator. 
We've studied that with proper encoding and decoding all effective processes 
can be reduced to the mill of Boolean algebra, to a network of "yes /no"  
switches. The instruction set of an IBM/360 can be realized indifferently, 
and isomorphically, by me with pencil and paper, by a hydraulic, pneu- 
matic, electric, electronic, or neuronic computer. The physics of it doesn't 
make any difference to the logic of a computation; it just affects certain 
material aspects, such as speed, volume, and energy dissipation. Then, let 
the technologist figure out the fastest, smallest, and most efficient physical 
realization. What does theoretical computer science care about physics? 

Well, for one, automata theory is much more closely tied to physics 
than is usually recognized. The very axioms of computability and compu- 
tation-complexity theory are a stylization of certain physical constraints, as 
Turing and yon Neumann (the originators of the two "standard" paradigms 
of computation, i.e., the Turing machine and the cellular automaton) were 
well aware. And this is good precedent for a young mathematical discipline. 
Other successful performers, such as geometry and differential equations, 
owe much for their productive, independent career to a long apprenticeship 
with nature. 

Let's forget about history, and go back for a moment to context 2 
(Control). It is true that any control task can be conceptually reduced to 
two stages (Figure 3a), that is, interfacing, and abstract computation per- 
formed by a single central processing unit. Thus, with proper interfacing 
any control problem can be reduced to a mere programming problem, where 
all we have to deal with is uniform, abstract symbols--rather than pulleys 
and muscles, pipes and gages, or electrons and crystals. 

But, having written the program, built a computer to run it, and 
interfaced the computer to sensors and actuators, have we solved the 
original problem? When we put a computer inside a mechanism, the 
geometry and the physics of the computer cannot be neatly separated from 
those of the mechanism itself. The computer's weight and bulk, its power 
needs, the length of its wires become significant parameters of the mecha- 
nism. The idealization of a computer as "pure  logic" fails. I'll give an 
example. 

Biologists have discovered a curious fact. For a mollusk, the octopus 
(Figure 3b) is a smart one. It has eyes comparable to ours, and is fairly good 
at visual discrimination tasks--in other words, at remembering things it has 
seen. The octopus is also very deft at manipulation tasks. Of course, you'll 
say, it must be. What, with eight arms, all those suckers, and a virtually 
infinite number of joints (or degrees of freedom, to use a technical word), 
how can it help not be the best one-man-band around? Yet, for all of its 
touching talents, the octopus is poor at remembering things it has touched. 
How come? 
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Fig. 3. (a) Through a suitable interface, a Turing machine can carry out an',, control task. (b) A 
typical example of a control task--the octopus. 

Let's try to design an octopus according to the scheme of Figure 3a. We 
want the octopus to remember visual patterns, right? In the r e t ina - - the  
visual in ter face--we convert light stimuli to standard electrical signals, and 
then we run wires from the retina to the central processing unit, that is, the 
brain, as in Figure 4a (we may assume that there is plenty of memory space 
in the b r a in - - t he  details don't  matter). Fortunately. the eyes are right next 
to the brain, and so the wiring is easy. Now, we want the octopus to 
remember touched shapes, that is, how it feels in its arms and suckers. Well, 
we put a sensor on each little bit of arm and sucker, and from each sensor 
we run a wire to the brain (Figure 4b). But this is not the octopus we 
wanted. It 's a bursting ball of wires with little bits of octopus just barely 
showing here and there! 

In the real octopus, there just isn't enough room for all those wires. 
And what size of brain would the octopus need for thorough, independent 
control of the dynamics of a million jo in t s? - -We barely manage, with our 
large brain, to control a few dozen. So, a compromise has to be reached: in 
the octopus most control is delegated to tiny peripheral processors strung 
along the eight arms, and the brain is never told what exactly the arms are 
doing. No wonder it can't  remember the shape of things touched! 

You see what kind of reasons force abstract computation to come to 
terms with physics in the context of process control. 

Come, now!- -you ' l l  s a y - - t h e  octopus has to swim and hide in crevices: 
it's clear it can' t  carry around too many extra pounds of brain and wires. 
But for Simulation and Optimization (contexts 3 and 4 above) we can make 
a huge computer and put it in the basement. It doesn't  have to move - - i t  
just has to sit and think. 
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Fit{. 4. (a) Wiring the retina (sensors) to the brain (central processing unit). (b) Wiring the 
suckers, etc.. to the brain. 

Here, we have a more fundamental problem. Computation dissipates 
energy- - tha t  is, turns high-grade energy into heat. The rate of heat removal 
is essentially proportional to the free surface of the computer, while in 
today's computers the rate of heat generation is proportional to the number 
of switches, or gates, and thus to the computer 's  polunze. If we make a 
computer bigger and bigger by increasing its size in all directions, its volume 
will increase much faster than its surface, heat removal will become inade- 
quate, and the computer will fry. Well, then we will make it grow only in 
two dimensions, keeping it fiat and thin. But then certain parts of the 
computer will be so far away from others that even at the speed of light 
signals will take an inordinate amount of time to make the trip. We lose 

speed. 
This is the single major limitation that high-performance computing 

faces in the near future, and it's an enormous limitation. Can it be solved by 
mere technologic ingenuity? No! As Landauer (1961) has made clear, the 
dissipation of a well-defined amount of energy comes as an inescapable 
physical consequence of certain very acts of symbolic manipulation. For 
example, in any conceivable computer, clearing one bit of memory must be 
accompanied by the dissipation of at least kT of energy (k is Boltzmann's 
constant, T the absolute temperature), 

Reversibility and Dissipation. Suppose we want to add two integers. 
This is an irreversible operation. In fact, 5 + 3 = 8 :  but also 4 + 4 - - 8 ,  
7 + 1 =  8, etc. Thus, there are several sets of initial conditions ("5 and 32' 
"4 and 42' etc.) that lead to the same final conditions ("8," in this case). On 
the other hand, the laws of microscopical dynamics are presumed to be 
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strictly reversible: starting from distinct initial states one always arrives at 
distinct final states (by the w a y - - I ' m  convinced this is all there is to the 
second law of thermodynamics). Thus, we have a mismatch between what 
we'd like to do - - say ,  add two n u m b e r s - - a n d  what nature is willing to do 
for us. We cannot just add two numbers: something else must happen at the 
same t ime- -or ,  better, will happen- -whe the r  we like it or n o t - - t o  preserve 
reversibility. 

An irreversible operation "erases" information. If we have "'5 and 3," 
with this information we can construct the result, "8."  But if we have "8," 
that 's not enough to reconstruct the original data. It could have been "5 and 
3," "4 and 4," etc. In adding the two numbers we have thrown away some 
information. In ordinary computers, the information that at any stage of the 
computat ion is erased from the mechanical modes (i.e., those degrees of 
freedom in which symbols are encoded) is actually dumped into the thermal 
modes - - the  heat sink. But every time that we open the door from the 
mechanical to the thermal modes to do some "garbage dumping," we have 
to put up with the thermal modes throwing garbage at us, in the form of 
noise (in microphysics, there are no one-way doors!). The thermal modes'  
rotten eggs are of size kT; if we want to maintain our aplomb under this 
barrage, the wares (and thus the refuse) of our trade must be bigger 
( E > k T ). Thence Landauer 's  result. 

To avoid energy dissipation, if we cannot change physics perhaps we 
can change our ways of manipulating symbols. Can we do any useful 
computat ion without destroying informat ion--wi thout  producing thermal 
garbage? In other words, can we make a reversible computer, and can a 
reversible computer  do everything that a conventional one can? The results 
of Bennett (1973), Fredkin (see Fredkin and Toffoli, 1982), and Toffoli 
(1977) show that this is in principle possible. Other obstacles may crop up 
on the way, but at least one conceptual obstacle to nondissipative computa- 
tion has been identified, and a bypass route indicated. 

4. MYSTERIES OR M O N S T E R S ?  

The medieval mapmaker,  when he drew the sign HIC SUNT LEONES 
("And here are wild beasts") really meant " I ' m  sorry, I haven't  been there: 
how could I possibly know?" 

Computer  scientists tend to have a similar reaction to the many 
mysteries that physics holds for them. With some thinking, almost anyone 
can put together a few physical constants and a little dimensional analysis, 
and come up with good-sounding names for lurking monsters: E = kT,  the 
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"thermodynamical  barrier to computation," or E : h / t ,  the "quantum 
barrier," or E = mc 2, the "relativistic barrier." I 'm not saying that this is not 
a good starting p o i n t - - b u t  somebody must actually go out and look. 
Landauer, for one, spent many years stalking the E : k T  monster, and came 
back with pictures full of detail. Now we know it actually exists, we know 
where it lives and what it looks like; and Bennett, Fredkin, and Toffoli are 
softly walking around i t - - they  think they've found a way not to wake it up. 

Today, Landauer (1982) is challenging us to come back with pictures of 
the " E  = h / t  thing." Only direct witnesses, please! Where does it live? Does 
it actually eat energy, etc.? We need good mapmakers willing to do their 
own surveying. 

If we find actual monsters on our way, we may have to stop and think, 
and maybe we will realize that we didn't  have to go through there after all. 
Certain obstacles may be more a matter of definition or interpretation. We 
all knew that the NAND gate is a universal computing primit ive--anything 
that can be done with other primitives, the NAND gate can do. Yet, the 
Fredkin gate (Fredkin and Toffoli, 1982) can do things that the NAND gate 
can't. How come? What has changed? Who was wrong? No o n e - - I t ' s  just 
that "doing" things now means something a little different, and possibly a 
little more interesting. 

5. W H O ' S  AFRAID OF THE BIG BAD REAL NUMBERS?  

And now, let's confess some insecurity. We computer scientists turn to 
physics to know what can and what cannot be done in the ways of 
computing. Physicists listen, smile, give us answers; they are about to leave, 
but then they stay for a while. They too seem glad to have somebody to talk 
to. They like to buttonhole us on a number of issues that have been nagging 
them. 

How come, they say, differential equations don't  seem to work so well 
any more? How does it happen that we take a real number, throw away 
most of it (when we put it in a fixed-size register), and yet get more or less 
the right results? Are discrete systems just an earthly reflection of perfect 
Platonic ideas - - the  continuum systems? Or perhaps discrete systems are the 
Platonic ones, and the continuum formalism is just a convenient way to 
handle the "easy ones" of them? 

Tell us a s to ry - - they  a sk - - abou t  synchronization, incompleteness, 
universal constructors, algorithmic entropy. Tell us parables from informa- 

tionland. 
After all, what they inherited from yon Neumann was something for 

grown-ups, i.e., a proof of the "impossibility of hidden variables" in 
quantum mechanics; what we computer scientists inherited from yon 
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N e u m a n n  was the universal-computing and -construct ing cellular automa-  
t o n - - a  parlor  game. Yet, within a cellular au tomaton  there is room for both 
observers and observees under the same rules of the game. The system is 
circularity proof:  it keeps working no matter  how (or whether) you care to 
interpret it, even more, "beings"  within a cellular au tomaton  can set up 
their own internal cel lular-automaton game, with exactly the same ru les - -  
they can maintain that they completely unders tand their world. On the 
other hand, the rules of quan tum mechanics tell us something of what  one 
part  of the world looks like to the other part:  they don ' t  tell us what the 
whole world might look like to an "outside viewer": they don ' t  even help us 
imagine such a view. 

Is there a way we can put together the two halves of von N e u m a n n ' s  
inheritance? 

We can no longer treat the physicist as white-collar mechanic:  Figure 
this out for me, Fix this for me, Do  this better for me. (" I  know what I want 
but don ' t  want to get my hands dirty.") Because, even as we were getting 
accustomed to the idea that " the  world, down there, is ultimately some sort 
of machine,"  they were beginning to suspect that " the  world, down there, 
must basically be some sort of computer !"  

6. C O N C L U S I O N S  

In the Age of Reason, mathematicians and physicists took great pride 
in their ability to solve problems. More recent is the fashion (undoubtedly  
stimulated by a number  of bad encounters,  such as Russel 's paradox or the 
uncertainty principle) to prove that certain questions are unsolvable (cf. 
G6del ' s  proof  and much work in computat ional  complexity). Having veri- 
fied some of our talents and digested some of our limits, we are in a better 
position now to tackle certain problems that are not " 'solvable" or "' unsolv- 
able." Rather, they are to some extent self-referential or circular (cf. 
Hofs tadter  (1979) and Dawkins (1976) for admirable presentations), and as 
such they don ' t  ask to be so lved - - they  have to be unders tood and lived. In 
nay opinion, " 'physical limits to computa t ion"  and "computa t iona l  models 
of phys i c s " - - t he  two poles of this con fe rence - - encompass  one of the 
deepest and most vital of these circular issues. To paraphrase Feynman 
(1982) what else can we use to make our models of the world but pieces of 
the world itself? 
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